$\nu_{\mu} \rightarrow \nu_{e}$ oscillation study in MINOS

Tingjun Yang, Stanford University APS April Meeting 2006, Dallas, Texas

Outline:

- Introduction
- v_e identification in the MINOS detectors
- Background studies using the MINOS near detector
- Conclusion

Goal of $v_{\mu} \rightarrow v_{e}$ oscillation study: measuring θ_{13}

$$\left| \begin{array}{c} \boldsymbol{\nu}_{\alpha} \right\rangle = \sum_{i} \boldsymbol{U}_{\alpha i} \left| \boldsymbol{\nu}_{i} \right\rangle \quad \begin{array}{c} \boldsymbol{\nu}_{i} = (\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}, \boldsymbol{\nu}_{3}, \ldots) \text{: mass eigenstates with mass } \boldsymbol{m}_{i} = (\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}, \ldots), \Delta \boldsymbol{m}_{ij} = \boldsymbol{m}_{i}^{2} - \boldsymbol{m}_{j}^{2} \\ \boldsymbol{\nu}_{\alpha} = (\boldsymbol{\nu}_{e}, \boldsymbol{\nu}_{\mu}, \boldsymbol{\nu}_{\tau}, \ldots) \text{: flavor eigenstates} \end{array}$$

MNS matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$|\mathbf{U}_{e3}|^2 = \sin^2(\theta_{13})$

Results from CHOOZ

- No evidence of oscillations in \overline{V}_e disappearance mode
- $\sin^2(2\theta_{13}) < 0.12$ at 90% CL for $|\Delta m_{32}|^2 = 3 \times 10^{-3} \text{eV}^2$

Goal of $v_u \rightarrow v_e$ oscillation study: measuring θ_{13} (continued)

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(1.27 \Delta m_{13}^{2} L/E)$$

- ignoring matter effect, solar terms and CP violating phase
- E: neutrino energy(GeV)
 - L: distance neutrino travels(km) 735km
 - Neutrino beam provided by 120 GeV protons from the Fermilab Main Injector.
 - A Near detector at Fermilab to measure energy spectrum and understand the background
 - A Far detector deep underground in the Soudan Mine, Minnesota, to search for v_e signals from oscillation

Position of osc. maximum for $\Delta m^2 = 0.003 \text{ eV}^2$

3

2006-4-20

signal/background separation in the MINOS detectors

MINOS far detector: 5.4 kton mass, 8×8×30m, 484 steel/scintillator planes

MINOS near detector: 1 kton mass 3.8×4.8×15m, 282 steel and 153 scintillator planes

steel thickness: 2.54cm ~ 1.44X₀

strip width: 4.12cm (Molière radius ~3.7cm)

Signal:

 v_e CC interaction: $v_e + N \rightarrow e + X$

compact, with typical EM shower profile

Primary Background:

NC interaction $v_l + N \rightarrow v_l + X$

often diffuse and scattered

Other background components: beam v_e , high-y v_{μ} CC interactions, oscillated v_{τ} in the far detector

signal/background separation in the MINOS detectors (continued)

A lot of effort has been devoted to the shower reconstruction in order to distinguish between electromagnetic shower and hadronic shower.

A few different discriminating techniques have been tried to enhance signal/background separation: cuts, Multivariate Discriminant Analysis, ANN based on shower sampling, ANN based on shower reconstruction.

One example analysis – Neural Net

$$\sin^2(2\theta_{13}) = 0.04$$
, $|\Delta m_{31}|^2 = 2.5 \times 10^{-3} \text{eV}^2$, $\sin^2(2\theta_{23}) = 1$, POT=15e20

V_e osc was scaled up by a factor of 10 for clarity.

Figure of Merit = signal/sqrt(background) = 1.26

ν_{μ} CC	NC	$v_{\rm e}^{ m beam}$	v_{τ} CC	Total background	$V_{ m e}^{ m osc}$
15.6	54.1	10.6	4.3	84.6	11.6

Estimating NC background using the muon-removal technique

Remove the muon in a selected v_{μ} CC event and use the rest of the event as a fake NC event.

This technique is a direct estimate of the NC background after some corrections, provided that the difference in hadron multiplicity does not change the event topology too much:

- ν_u CC selection efficiency and purity
- v_{μ} CC oscillation probability in the far detector
- CC/NC cross section ratio

Constraining the v_e flux from \overline{v}_u measurements

Primary source of low energy beam v_e is $\mu^+ \to e^+ + v_e + \overline{v}_{\mu}$ a measurement of low energy v_{μ} can be used to constrain the v_e flux

Estimating background uncertainties using horn off data

True energy of true ν_{μ} at the ND

If we turn off the horns, the pions will not get focused and the peak in the neutrino energy spectrum will disappear.

After we apply the same v_e selection cuts, we will get a NC-enriched sample.

$$N^{\text{on}} = N_{\text{NC}} + N_{\text{CC}} + N_{\text{e}}$$
(1)
$$N^{\text{off}} = r_{\text{NC}} * N_{\text{NC}} + r_{\text{CC}} * N_{\text{CC}} + r_{\text{e}} * N_{\text{e}}$$
(2)

Can be solved to get NC and ν_{μ} CC background

 N^{on} , N^{off} : selected v_e candidates with horn on and horn off – will be measured

 N_e : beam v_e background with horn on – from MC $r_{NC(CC,e)} = N_{NC(CC,e)}^{off}/N_{NC(CC,e)} - from MC$

 N_{NC} , N_{CC} : NC, v_{μ} CC background with horn on – will be calculated based on eqn. (1) and (2)

Estimating background uncertainties using horn off data (continued)

The advantage of this technique: can separate different backgrounds and estimate the uncertainty of each component.

MC simulation: 1.5e18 POTs horn off and ~1e19 POTs horn on data:

$$N^{on} = 608.4 \qquad \delta N^{on} = 0$$

$$N^{off}=189.1 \qquad \delta N^{off}=13.8$$

$$r_{NC} = 0.425 \quad r_{CC} = 0.107 \quad r_e = 0.165, \, \frac{\delta r}{r} = \frac{10\%}{100}$$

$$N_e = 96.8$$
 $\delta N_e = 19.4 - assign a 20\%$ systematic error

Expected background at Near Detector for 1.5e18 POTs

	Tot. bg.	NC	ν_{μ} CC	$ ulebox{0.05cm}{V_{ m e}^{ m beam}}$
background	608.4±94.2	361.5±64.2	150.1±66.1	96.8±19.4
error	15.5%	17.8%	44.0%	20%

Other contributions and ongoing work:

- hand scanning an independent cross check, valuable inputs to automated analysis
- analysis tools development
- cosmic ray background study
- v_e -related hadron production study

Sensitivity (90% CL Exclusion)

- With our current data set, we will be able to approach CHOOZ's limit.
- With five times more data, we will improve CHOOZ's limit by a factor of 2. If θ_{13} is not too small, we may see a signal and make the first measure of θ_{13} .

